Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses
نویسندگان
چکیده
BACKGROUND Bioethanol produced by the yeast Saccharomyces cerevisiae is currently one of the most promising alternatives to conventional transport fuels. Lignocellulosic hemicelluloses obtained after hydrothermal pretreatment are important feedstock for bioethanol production. However, hemicellulosic materials cannot be directly fermented by yeast: xylan backbone of hemicelluloses must first be hydrolyzed by heterologous hemicellulases to release xylose, and the yeast must then ferment xylose in the presence of fermentation inhibitors generated during the pretreatment. RESULTS A GIN11/FRT-based multiple-gene integration system was developed for introducing multiple functions into the recombinant S. cerevisiae strains engineered with the xylose metabolic pathway. Antibiotic markers were efficiently recycled by a novel counter selection strategy using galactose-induced expression of both FLP recombinase gene and GIN11 flanked by FLP recombinase recognition target (FRT) sequences. Nine genes were functionally expressed in an industrial diploid strain of S. cerevisiae: endoxylanase gene from Trichoderma reesei, xylosidase gene from Aspergillus oryzae, β-glucosidase gene from Aspergillus aculeatus, xylose reductase and xylitol dehydrogenase genes from Scheffersomyces stipitis, and XKS1, TAL1, FDH1 and ADH1 variant from S. cerevisiae. The genes were introduced using the homozygous integration system and afforded hemicellulolytic, xylose-assimilating and inhibitor-tolerant abilities to the strain. The engineered yeast strain demonstrated 2.7-fold higher ethanol titer from hemicellulosic material than a xylose-assimilating yeast strain. Furthermore, hemicellulolytic enzymes displayed on the yeast cell surface hydrolyzed hemicelluloses that were not hydrolyzed by a commercial enzyme, leading to increased sugar utilization for improved ethanol production. CONCLUSIONS The multifunctional yeast strain, developed using a GIN11/FRT-based marker recycling system, achieved direct conversion of hemicellulosic biomass to ethanol without the addition of exogenous hemicellulolytic enzymes. No detoxification processes were required. The multiple-gene integration technique is a powerful approach for introducing and improving the biomass fermentation ability of industrial diploid S. cerevisiae strains.
منابع مشابه
Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production
BACKGROUND In addition to efficient pentose utilization, high inhibitor tolerance is a key trait required in any organism used for economically viable industrial bioethanol production with lignocellulose biomass. Although recent work has succeeded in establishing efficient xylose fermentation in robust industrial Saccharomyces cerevisiae strains, the resulting strains still lacked sufficient in...
متن کاملA xylose-fermenting yeast hybridized by intergeneric fusion between Saccharomyces cerevisiae and Candida intermedia mutants for ethanol production
Background: Bioethanol production from lignocellulosic biomass, in particular xylose, is currently of great concern, given the abundance of this sugar in the world, because Saccharomyces cerevisiae, which is widely used for bioethanol production, is unable to naturally ferment xylose. The aim of this study was to obtain a novel yeast capable of stably producing ethanol from biomass containing x...
متن کاملComparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
BACKGROUND Two heterologous pathways have been used to construct recombinant xylose-fermenting Saccharomyces cerevisiae strains: i) the xylose reductase (XR) and xylitol dehydrogenase (XDH) pathway and ii) the xylose isomerase (XI) pathway. In the present study, the Pichia stipitis XR-XDH pathway and the Piromyces XI pathway were compared in an isogenic strain background, using a laboratory hos...
متن کاملConstruction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution
BACKGROUND It remains a challenge for recombinant S. cerevisiae to convert xylose in lignocellulosic biomass hydrolysates to ethanol. Although industrial diploid strains are more robust compared to laboratory haploid strains, however, industrial diploid S. cerevisiae strains have been less pursued in previous studies. This work aims to construct fast xylose-fermenting yeast using an industrial ...
متن کاملDevelopment on ethanol production from xylose by recombinant Saccharomyces cerevisiae
Xylose is the second major fermentable sugar present in lignocellulosic hydrolysates, so its fermentation is essential for the economic conversion of lignocellulose to ethanol. However, the traditional ethanol production strain Saccharomyces cerevisiae does not naturally use xylose as a substrate. A number of different approaches have been used to engineer yeasts to reconstruct the gene backgro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2014